TEORI DAN UJIAN - DUNIA INFORMASI

Breaking

Saturday, 5 July 2014

TEORI DAN UJIAN

Pasal 4.
TEORI DAN UJIAN.


TEORI mesti diuji. Teori dalam bahasa Inggris bisa didefinisikan sebagai “satu hipotesis yang sudah diuji”. A proved hypothesis. Satu hipotesis ialah satu paham yang sementara dipakai tetapi belum nyata kebenarannya: satu persangka, satu kepercayaan semata-mata. Kalau sudah nyata kebenarannya, ia bernama teori.

Selama atom masih tinggal dalam otak Democritus saja, maka atom tadi dalam ribuan tahun masih tinggal sebagai hipotesis. Tetapi sesudah atom itu sekarang bisa dilihat dengan mikroskop, maka atom itu bukan barang kepercayaan, dugaan lagi, melainkan bukti. Kadang-kadang teori itu juga dipakai untuk ditentangkan dengan praktek. Teori yang tidak bisa dipraktekkan semata-mata tinggal sebagai teori belaka. Teori yang kita maksud di sini adalah teori yang nyata kebenarannya, teori yang sudah diuji dan dilaksanakan sehari-hari.

Disini mesti diingat, bahwa perkataan Latin atau Yunani yang pindah ke bahasa Belanda dan Inggris sudah tidak berubah lagi pengertiannya. Asalnya sama, tetapi perkembangannya berlainan. Begitulah perbedaan terjemahan dan pemakaian kata-kata “teori” dan “probelm” dalam dua bahasa tersebut.

Yang penting buat saya, buat Madilog, ialah metode atau cara yang dijalankan untuk menguji benar tidaknya suatu teori. Metode yang dipakai :
  1. Metode sintesis.
  2. Metode analitis.
  3. Metode reductio ad absurdum.
Ketiga metode ini sukar dilaksanakan dengan tepat kalau tiada mengambil contoh dari geometri sendiri. Sebab itu kita rasa perlu di sini berlaku sebagai murid sekolah menengah untuk menguji benar tidaknya suatu teori (Bagi pembaca yang tidak mempelajari geometri, bagian ini bisa dilampaui saja).

1. Metode sintesis
Untuk melaksanakan metode ini saya ambil teori Pythagoras, filsuf Yunani yang masyhur lebih dari 2.500 tahun yang lampau. Bukan saja teori ini memberi contoh yang baik guna melaksanakan metode sintesis. Tetapi juga sebagai penghormatan kepada pemikir besar zaman purbakala yang dengan beberapa pemikir Yunani lain, boleh dianggap perintis sains. Teori Pythagoras adalah satu anak tangga yang mesti dinaiki pada jenjang geometri, menurut sistem Euclides. Beberapa cara ujian bisa dilakukan. Dulu saya tahu beberapa jalan. Sekarang sudah lupa. Tetapi ujian yang di bawah ini cukup baik buat maksud kita.
TEORI PYTAHGORAS :“Jumlah kuadrat (lipat dua) dari dua garis sudut siku = kuadrat dari garis miring                                         Terbukti ABC bersiku (90º) pada A.                  Mesti di uji : AC ² + AB ² = BC ²

Ujian: Kita tarik garis tinggi AD (artinya AD membentuk sudut (90º) pada BC
 ADC sama bentuk dengan  ADB.Jadi, ADC sama bentuk dengan ADB(menurut teori sama sebangun) – tingkat ICD : AC = AC : BCDB : AB = AB : BC(menurut teori sudut siku) – tingkat IIJadi      AC ² = CD x BC             AB ² = DB x BC(menurut teori hukum aritmetika) – tingkat IIIAC ² + BC ²  = (CD + DB) x BC                     = BC x BC                     = BC ²                        (menurut hukum aritmetika) – tingkat IV

Empat tingkat I, II, III, IV, kita mesti jalani baru sampai ke penghabisan. Masing-masing dari 4 tingkat itu ialah teori geometri juga, tetapi III dn IV ialah teori atau hukum yang dipakai pada aritmetika yang bisa dipakai pula dalam aljabar. Tiap-tiap teori yang dipakai bisa dipecah lagi menjadi teori yang dipelajari lebih dahulu.

Nyatalah sifat atau metode cara sintetis itu memasang teori yang sudah dikenal, sampai teori yang mesti diuji nyata kebenarannya. Kita berjalan dari yang dikenal kepada yang baru. Kita pasang segala teori yang sudah dikenal guna menyatakan yang belum dikenal. Seolah-olah kita berjenjang naik!

Kalau kita pakai jalan analitis, kita berlaku sebaliknya. Kita bertangga turun.

2. Metode analitis
Teori = soal : kalau salah satu dari 2 sisi sudut siku itu setengah dari sisi yang miring (hypotenusa), maka di depan sisi itu ada sudut 30º                                                                        Diketahui : sudut CAB  = 90 º                              AC  = ½ BC = CD     Mesti di uji sudut ABC = 30 º

Disini kita tidak kenal atau tak lekas kenal teori yang bisa dipasang guna mencapai maksud kita. Bisa jadi kalau lama kita renungkan atau kita pendam soal ini dalam kepala, maka sesudah satu atau dua jam, satu atau dua hari, sedang mandi atau menyepak bola, sedang minum es atau makan gado-gado, jawabnya tiba-tiba keluar. Tetapi sikap ini tak bisa dipakai dalam ujian. Kalau jalan sintetis tak lekas membawa hasil, maka andaikan teori ini benar.

Jadi sudut ABC yang mesti kita uji itu betul 30 º

Kita bertanya, apakah akibatnya? Kalau akibatnya tidak berlawanan dengan hukum geometri umumnya dan fakta-fakta soal, yaitu bukti teori yang khususnya mesti kita wujudkan, maka benarlah soal itu.

Demikianlah kalau  ABC = 30º, maka  ACB = 60º. Kalau begitu  ADC =  60º sebab AC = CD menurut bukti-bukti soal. Kalau  ADC = 60º, maka  ADB = 180º - 60º = 120º.
Kalau  ADB = 120º, maka  BAD = 180º - (120º+30º) = 30º
Kalau  BAD = 30º, maka  DAC = 60º

Dan ini benar, menurut yang berbukti bermula. Quot Erat Demonstrandum. Demikianlah sudah terbukti.
Nyatalah di atas, kita bermain dengan “kalau” dan main “andai”. Dari ujung yakni perkara yang mesti ktia uji sampai ke pangkal, ke dasar geometri, kita main “andai”. Bila kita tak bertemu dengan hal yang berlawanan, dengan geometri umumnya dan bukti-bukti yang didasarkan pada soal itu sendiri khususnya, maka benarlah jalan kita. Betullah teori atau soal itu tadi.

Dengan metode sintesis kita berjalan dari yang dikenal ke yang belum atau yang mau kita kenal. Dengan metode analitis sebaliknya. Kita berjalan dari yang mau tetapi belum kita kenal, kepada jalan yang sudah kita kenal. Kita ungkap segala yang tersembunyi dalam rahasia baru, dalam teori atau soal baru.

3. Metode reduciton ad absurdum
Ada kalanya kita tak lekas atau tak dapat jalankan 2 metode di atas. Dalam hal ini kita pakai perkakas terakhir, metodereduciton ad absurdum. Kita jerumuskan, sengaja sesatkan siapa yang tak percaya pada teori itu supaya insyaf, bahwa teori itu saja yang benar.Teori atau soal berkata :Cuma satu garis siku bisa dijatuhkan dari titik C pada garis AB.Terbukti           : garis AB                          Sudut CDA = 90ºMesti diuji        : cuma CD saja yang bersiku (90º) pada AB.

Ujian : kita kerok otak kita mencari teori dan hukum yang kita kenal untuk menyelesaikan soal ini. Tak dapat! kita bermain “pengandaian” dan coba berjalan dari yang belum dikenal pada yang nyata dikenal. Gagal! Kita buntu, keringat sudah keluar, kita sedang dalam examen dan sang waktu hampir berlalu. Sekarang, mau tak mau, lari pada jalan ketiga : reduction ad absurdum.
Seandainya ada garis kedua, bersiku, jatuh dari C pada AB, umpamanya garis CE. Kalau begitu sudut CED = 90º. Maka jumlah 3 sudut CDE = 90º + 90º + Xº, atau 180º + Xº lebih besar dari 180º, maka bertentangan dengan hukum yang sudah dikenal dalam geometri, yaitu: jumlah semua sudut dalam sebuah segitiga selalu 180º. Maka pengandaian tadi absurd. Bertentangan dengan hukum yang dikenal. Karenanya teori yang mau kita uji di atas itu benar.

Pada jalan ketiga ini, pertama kali mengandaikan akibat teori itu salah. Kita berjalan membelakang dari akibat ke pangkal. Akhirnya kita sesat, sebab kita berjumpa dengan hal yang bertentangan dengan hukum atau teori geometri yang sudah diakui kebenarannya lebih dahulu. Jadi akhirnya kita yakin bahwa akibat teori yang mau diuji itu sendiri tidaklah salah. Semua jalan lain malah menyesatkan kita. Kalau akibat disalahkan, maka “dasar-dasar” geometri yang sudah diakui kebenarannya mesti disahkan pula.



PROBLEMA

Dalam problema, yaitu soal-soal membuat sebuah gambar geometri (geometry figure) dengan penggaris dan jangka, kita juga memakai dua cara pertama dalam menguji teori tadi: sintesis dan analitis.

Ada lagi satu cara yang bisa dipakai, yaitu intersection of logic, atau pertemuan jalan. Sesudah gambar geometri tadi dibuat, maka seperti pada teori, kita mesti menguji kebenaran gambar yang kita peroleh. Uji, apakah gambar itu memenuhi syarat yang dituntut oleh problema. Jadi sebuah problema mesti mula-mula dipecahkan baru kemudian di uji.

Untuk meringkas, maka sekarang tidaklah perlu kita membuat gambar untuk menjelaskan dua cara yang pertama, karena sudah masuk pembicaraan kita terdahulu. Untuk memudahkan pengertian, lebih baik kita mulai dengan cara yang baru itu.

INTERSECTION OF LOGIS

Problema: Tariklah garis menyinggung pada satu lingkaran di luar titik tadi.
Diketahui: Lingkaran M lingkaran N
Dikehendaki: Menarik garis menyinggung dari P ke lingkaran dari P ke lingkaran N
Konstruksi : Sambungkan P dengan M
Buat lingkaran penolong M dengan memakai titik M sebagai titik pusat.
Lingkaran N memotong lingkaran pada titik A dan titik B          
Hubungkan titik A dan B dengan P.
Jadilah garis PA dan PB sebagai garis singgung yang dikehendaki.
Ujian: Tarik garis penolong MA dan MB. Nyata bahwa sudut MAP dan MBP bersiku 90º, karena masing-masing berdiri pada lingkaran. Garis PA dan PB berdiri tegak lurus atas straal MB dan MA. Jadinya kedua garis PA dan PB adalah dari singgung.
Amatilah sudut MBP. Sudut itu 90º sebab berdiri menentang ½ lingkaran PBM. Ia adalah pertemuan garis PB dan NB di titik B. Titik B pada dua garis PB berlocus, bertempat di seluruh lingkaran M. Dimana dua lingkaran itu bertemu, berselang, seperti di B, disanalah titik B dari garis PB dan B dari garis MB berpadu.
Amatilah sendiri sudut MAP

No comments: